sábado, 6 de abril de 2019

Materiales Polímeros


MATERIALES POLÍMEROS
Los polímeros (del griego poly: «muchos» y mero: «parte», «segmento») son macromoléculas (generalmente orgánicas) formadas por la unión de moléculas más pequeñas llamadas monómeros.
La característica principal de estos materiales, que establece la diferencia con los materiales cerámicos y con los materiales metálicos, es que están constituidos por macromoléculas.  Al igual que cualquier molécula, los materiales poliméricos están formados (en su mayor parte) por átomos de elementos no metálicos unidos entre sí por enlaces covalentes y se les ha denominado con el nombre genérico de polímeros (o macromoléculas) debido a que son gigantescas moléculas constituidas por unidades repetitivas.  Existen casos en los que el polímero está formado por átomos de elementos no metálicos y semi metálicos.
El almidón, la celulosa, la seda y el ADN son ejemplos de polímeros naturales, entre los más comunes de estos y entre los polímeros sintéticos encontramos el nailon, el polietileno y la baquelita.
Cuando se unen entre sí más de un tipo de moléculas (monómeros), la macromolécula resultante se denomina copolímero.
Como los polímeros se forman usualmente por la unión de un gran número de moléculas menores, tienen altos pesos moleculares. No es infrecuente que los polímeros tengan pesos moleculares de 100.000 o mayores.
Los polímeros se caracterizan a menudo sobre la base de los productos de su descomposición. Así si se calienta caucho natural (tomado del árbol Hevea del valle del Amazonas), hay destilación de hidrocarburo, isopreno.
Propiedades
Los materiales poliméricos son flexibles y son aislantes del calor y de la electricidad.
Los electrones de valencia de los átomos que constituyen este tipo de materiales, se encuentran formando enlaces covalentes que unen cada átomo con sus vecinos constituyendo moléculas.  Estos electrones se mueven en el espacio asignado a los orbitales moleculares, el cual está restringido estrictamente a su tamaño, y no tienen libertad de desplazarse a otras zonas, por lo que los materiales poliméricos no conducen el calor ni la electricidad, son aislantes.
Por otro lado, los enlaces covalentes sencillos tienen la capacidad de rotar sobre sí mismos, lo cual permite que una parte de la molécula pueda cambiar su posición respecto a otras, dándole flexibilidad a las moléculas.
Schaffer y otros mencionan que los materiales poliméricos tienen baja resistencia debido a su peculiar estructura de poseer enlaces débiles entre una cadena de polímero y otra.
En cambio, existe una gran diferencia entre el comportamiento físico de las moléculas de bajo peso molecular y las macromoléculas, pues éste depende del tamaño de las partículas.  Atendiendo a su comportamiento físico, los polímeros se clasifican en termoplásticos y termoestables dependiendo de su capacidad para moldearse bajo la acción del calor.  El comportamiento físico que presenta cada uno de ellos depende mucho de su estructura.

Propiedades Físicas de los Polímeros
·       Estudios de difracción de rayos X sobre muestras de polietileno comercial, muestran que este material, constituido por moléculas que pueden contener desde 1.000 hasta 150.000 grupos CH2 – CH2 presentan regiones con un cierto ordenamiento cristalino, y otras donde se evidencia un carácter amorfo: a éstas últimas se les considera defectos del cristal.
·       En este caso las fuerzas responsables del ordenamiento cuasicristalino, son las llamadas fuerzas de van de Waals.
·       En otros casos (nylon 66) la responsabilidad del ordenamiento recae en los enlaces de H.
·       La temperatura tiene mucha importancia en relación al comportamiento de los polímeros.
·       A temperaturas más bajas los polímeros se vuelven más duros y con ciertas características vítreas debido a la pérdida de movimiento relativo entre las cadenas que forman el material.
·       La temperatura en la cual funden las zonas cristalinas se llama temperatura de fusión (Tf)
·       Otra temperatura importante es la de descomposición y es conveniente que la misma sea bastante superior a Tf.
Clasificación de los Polímeros según sus Propiedades Físicas
Desde un punto de vista general se puede hablar de tres tipos de polímeros:
·       Elastómeros
·       Termoplásticos
·       Termoestables.
Los elastómeros y termoplásticos están constituidos por moléculas que forman largas cadenas con poco entrecruzamiento entre sí. Cuando se calientan, se ablandan sin descomposición y pueden ser moldeados.
Los polímeros termoplásticos están formadas por cadenas sencillas o ramificadas, que pueden deslizarse unas sobre otras cuando se calientan, por lo que se ablandan, se funden, pueden ser inyectadas en moldes para obtener piezas de la forma deseada y posteriormente pueden volver a fundirse para ser utilizados nuevamente.
Los termoestables se preparan generalmente a partir de sustancias semifluidas de peso molecular relativamente bajo, las cuales alcanzan, cuando se someten a procesos adecuados, un alto grado de entrecruzamiento molecular formando materiales duros, que funden con descomposición o no funden y son generalmente insolubles en los solventes más usuales.
Los polímeros termoestables o de termo fraguado están constituidos por cadenas unidas entre sí por gran cantidad de enlaces entre cruzados, constituyendo una red tridimensional que se extiende por toda la pieza del material, que le dan gran rigidez a la estructura.
Propiedades eléctricas
Los polímeros industriales en general suelen ser malos conductores eléctricos, por lo que se emplean masivamente en la industria eléctrica y electrónica como materiales aislantes. Las baquelitas (resinas fenólicas) sustituyeron con ventaja a las porcelanas y el vidrio en el aparellaje de baja tensión hace ya muchos años; termoplásticos como elPVC y los PE, entre otros, se utilizan en la fabricación de cables eléctricos, llegando en la actualidad a tensiones de aplicación superiores a los 20 KV, y casi todas las carcasas de los equipos electrónicos se construyen en termoplásticos de magníficas propiedades mecánicas, además de eléctricas y de gran duración y resistencia al medio ambiente, como son, por ejemplo, las resinas ABS.
Para evitar cargas estáticas en aplicaciones que lo requieran, se ha generalizado el uso de antiestáticos que permite en la superficie del polímero una conducción parcial decargas eléctricas.
Evidentemente la principal desventaja de los materiales plásticos en estas aplicaciones está en relación a la pérdida de características mecánicas y geométricas con la temperatura. Sin embargo, ya se dispone de materiales que resisten sin problemas temperaturas relativamente elevadas (superiores a los 200 °C).
Las propiedades eléctricas de los polímeros industriales están determinadas principalmente, por la naturaleza química del material (enlaces covalentes de mayor o menor polaridad) y son poco sensibles a la microestructura cristalina o amorfa del material, que afecta mucho más a las propiedades mecánicas. Su estudio se acomete mediante ensayos de comportamiento en campos eléctricos de distinta intensidad y frecuencia. Seguidamente se analizan las características eléctricas de estos materiales.
Los polímeros conductores fueron desarrollados en 1974 y sus aplicaciones aún están siendo estudiadas.
Las propiedades mecánicas
Son una consecuencia directa de su composición, así como de la estructura molecular, tanto a nivel molecular como supermolecular. Actualmente las propiedades mecánicas de interés son las de los materiales polímeros y éstas han de ser mejoradas mediante la modificación de la composición o morfología: por ejemplo, cambiar la temperatura a la que los polímeros se ablandan y recuperan el estado de sólido elástico o también el grado global del orden tridimensional. Normalmente el incentivo de estudios sobre las propiedades mecánicas es generalmente debido a la necesidad de correlacionar la respuesta de diferentes materiales bajo un rango de condiciones con objeto de predecir el comportamiento de estos polímeros en aplicaciones prácticas.
Durante mucho tiempo los ensayos han sido realizados para comprender el comportamiento mecánico de los materiales plásticos a través de la deformación de la red de polímeros reticulados y cadenas moleculares enredadas, pero los esfuerzos para describir la deformación de otros polímeros sólidos en términos de procesos operando a escala molecular son más recientes. Por lo tanto, se considerarán los diferentes tipos de respuesta mostrados por los polímeros sólidos a diferentes niveles de tensión aplicados; elasticidad, viscoelasticidad, flujo plástico y fractura.
Clasificación
Existen varias formas posibles de clasificar los polímeros, sin que sean excluyentes entre sí:
Según su origen
Polímeros naturales. Existen en la naturaleza muchos polímeros y las biomoléculas que forman los seres vivos son macromoléculas poliméricas. Por ejemplo, las proteínas, los ácidos nucleicos, los polisacáridos (como la celulosa y la quitina), el hule o caucho natural, la lignina, etc.
Polímeros semisintéticos. Se obtienen por transformación de polímeros naturales. Por ejemplo, la nitrocelulosa, el caucho vulcanizado, etc.
Polímeros sintéticos. Muchos polímeros se obtienen industrialmente a partir de los monómeros. Por ejemplo, el nailon, el poliestireno, el Policloruro de vinilo (PVC), elpolietileno, etc.
Según su mecanismo de polimerización
En 1929 Carothers propuso la siguiente clasificación:
Polímeros de condensación. La reacción de polimerización implica a cada paso la formación de una molécula de baja masa molecular, por ejemplo agua.
Polímeros de adición. La polimerización no implica la liberación de ningún compuesto de baja masa molecular.Esta polimerización se genera cuando un "catalizador", inicia la reacción. Este catalizador separa la unión doble carbono en los monómeros, luego aquellos monómeros se unen con otros debido a los electrones libres, y así se van uniendo uno tras uno hasta que la reacción termina.
Polímeros formados por reacción en cadena. Se requiere un iniciador para comenzar la polimerización; un ejemplo es la polimerización de alquenos (de tipo radicalario). En este caso el iniciador reacciona con una molécula de monómero, dando lugar a un radical libre, que reacciona con otro monómero y así sucesivamente. La concentración de monómero disminuye lentamente. Además de la polimerización de alquenos, incluye también polimerización donde las cadenas reactivas son iones (polimerización catiónica y aniónica).
Polímeros formados por reacción por etapas. El peso molecular del polímero crece a lo largo del tiempo de manera lenta, por etapas. Ello es debido a que el monómero desaparece rápidamente, pero no da inmediatamente un polímero de peso molecular elevado, sino una distribución entre dímeros, trímeros, y en general, oligómeros; transcurrido un cierto tiempo, estos oligómeros empiezan a reaccionar entre sí, dando lugar a especies de tipo polimérico. Esta categoría incluye todos los polímeros de condensación de Carothers y además algunos otros que no liberan moléculas pequeñas pero sí se forman gradualmente, como por ejemplo los poliuretanos.
Según su composición química
Polímeros orgánicos. Posee en la cadena principal átomos de carbono.
Polímeros orgánicos vinílicos. La cadena principal de sus moléculas está formada exclusivamente por átomos de carbono.
Dentro de ellos se pueden distinguir:
Poliolefinas, formados mediante la polimerización de olefinas.
Ejemplos: polietileno y polipropileno.
Polímeros estirénicos, que incluyen al estireno entre sus monómeros.
Polímeros vinílicos halogenados, que incluyen átomos de halógenos (cloroflúor...) en su composición.
Ejemplos: PVC y PTFE.
Polímeros acrílicos. Ejemplos: PMMA.
Polímeros orgánicos no vinílicos. Además de carbono, tienen átomos de oxígeno o nitrógeno en su cadena principal.
Algunas sub-categorías de importancia:
Polímeros inorgánicos. Entre otros:
Basados en azufre. Ejemplo: polisulfuros.
Basados en silicio. Ejemplo: silicona.
Según sus aplicaciones
Atendiendo a sus propiedades y usos finales, los polímeros pueden clasificarse en:
Elastómeros. Son materiales con muy bajo módulo de elasticidad y alta extensibilidad; es decir, se deforman mucho al someterlos a un esfuerzo pero recuperan su forma inicial al eliminar el esfuerzo. En cada ciclo de extensión y contracción los elastómeros absorben energía, una propiedad denominada resiliencia.
Plásticos. Son aquellos polímeros que, ante un esfuerzo suficientemente intenso, se deforman irreversiblemente, no pudiendo volver a su forma original. Hay que resaltar que el término plástico se aplica a veces incorrectamente para referirse a la totalidad de los polímeros.
Fibras. Presentan alto módulo de elasticidad y baja extensibilidad, lo que permite confeccionar tejidos cuyas dimensiones permanecen estables.
Recubrimientos. Son sustancias, normalmente líquidas, que se adhieren a la superficie de otros materiales para otorgarles alguna propiedad, por ejemplo resistencia a la abrasión.
Adhesivos. Son sustancias que combinan una alta adhesión y una alta cohesión, lo que les permite unir dos o más cuerpos por contacto superficial.
Según su comportamiento al elevar su temperatura
Para clasificar polímeros, una de las formas empíricas más sencillas consiste en calentarlos por encima de cierta temperatura. Según si el material funde y fluye o por el contrario no lo hace se diferencian tres tipos de polímeros:
Termoplásticos, que fluyen (pasan al estado líquido) al calentarlos y se vuelven a endurecer (vuelven al estado sólido) al enfriarlos. Su estructura molecular presenta pocos (o ningún) entrecruzamientos. Ejemplos: polietileno (PE), polipropileno (PP), cloruro de polivinilo PVC.
Termoestables, que no fluyen, y lo único que conseguimos al calentarlos es que se descompongan químicamente, en vez de fluir. Este comportamiento se debe a una estructura con muchos entrecruzamientos, que impiden los desplazamientos relativos de las moléculas.
Elastómero, plásticos con un comportamiento elástico que pueden ser deformados fácilmente sin que se rompan sus enlaces o modifique su estructura.
La clasificación termoplásticos / termoestables es independiente de la clasificación elastómeros / plásticos / fibras. Existen plásticos que presentan un comportamiento termoplástico y otros que se comportan como termoestables. Esto constituye de hecho la principal subdivisión del grupo de los plásticos y hace que a menudo cuando se habla de "los termoestables" en realidad se haga referencia solo a "los plásticos termoestables". Pero ello no debe hacer olvidar que los elastómeros también se dividen en termoestables (la gran mayoría) y termoplásticos (una minoría pero con aplicaciones muy interesantes).

No hay comentarios:

Publicar un comentario

Mundo de los Defectos

MUNDO DE LOS DEFECTOS DEFECTOS EN LOS MATERIALES METÁLICOS Las propiedades de los metales pueden ser afectadas profundamente por la ...